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Abstract—This paper addresses the control of the full particle size distribution (PSD) in a semibatch emulsion copoly-
merization reactor. The numerical approximation of a fundamental population balance model results in a high order
system to accurately describe the distribution of particle size; therefore, model order reduction is required. Pseudo
random input signals are input to the mechanistic model to generate a data set which covers the reachable region of
the system, on the basis of which the transformation matrices are calculated by principal component analysis (PCA).
A linear time varying model with reduced order obtained from the transformation matrices is augmented in the
prediction equation of linear model predictive control. The performance of the controller is evaluated to drive the
particle size distribution at the final time of the batch to the desired distribution in the presence of disturbances.

Key words: Particle Size Distribution, Model Order Reduction, Principal Component Analysis, Semibatch Emulsion Co-
polymerization Reactor

INTRODUCTION radicals per particle is calculated to account for the size-dependent
growth rate and corroborated the effectiveness of the model by com-
The end-use quality of polymers produced by emulsion poly-parison with experimental data. In their recent work [Immanuel et
merization is highly dependent on the microstructural propertiesal., 2003], they extended the model by including a coagulation mech-
For example, when the polymer latex is employed as paint, manwnism.
of the end-use properties are directly related to the particle size dis- As an analytical solution of the population balance model is ob-
tribution (PSD) of the polymer, while pressure sensitive adhesiortained only under very strict assumptions, most solution methods
is determined by the molecular weight distribution (MWD) [Elizalde are based on numerical analysis. The method of weighted residuals
et al., 2002]. Since a trial and error procedure is time consumingvas described by Ramkrishna [1985], whereas Hounslow [1990] and
and is ineffective for the production of polymers with desired end-Mantzaris et al. [2001] proposed a finite difference method (FDM)
use property such as rheological properties and adhesion, researfdn the solution of discretized population balances. The FDM was
has been focused on the optimization and the control of the praalso applied to an emulsion polymerization system [Gilbert, 1997].
cess on the basis of the available mathematical/mechanistic modselbard et al. [1980] and Langrebe and Pratsinis [1990] introduced
els. In order to describe the evolution of PSD in the emulsion polythe sectional model obtained by dividing the continuous PSD into
merization, a population balance model [Ramkrishna, 2000] has finite number of sections within which the size distribution func-
been developed which includes the three major phenomena in thiion was assumed to be constant. Kumar and Ramkrishna [1997]
emulsion polymerization reactor: nucleation, growth and coagulationdiscretized the distribution into classes of particles defined by finite
Since Min and Ray [1974] introduced the modeling of the entireparticle size intervals and forced the discretization grid to move with
PSD, the population balance equation has been widely applied iparticle growth rate in such a way that the partial differential equa-
the analysis of the emulsion polymerization reaction [Rawlings andions were transformed from a differential to integral form over small
Ray, 1987]. Coen et al. [1998] and Crowley et al. [2000] employedintervals.
the zero-one modeling approach with the assumption that the par- The control of polymer properties in emulsion polymerization
ticle population is classified into a population with zero radicals has been studied by using several different strategies. Since Yabuki
and a population with one radical, while Saldivar et al. [1998] ap-and MacGregor [1997] introduced the midcourse correction pol-
plied a population balance equation to predict the PSD producetty, this method was applied to the control of particle size distribu-
by micellar nucleation by making the pseudo-homopolymerizationtion in the semibatch emulsion polymerization reactor by Flores-
approximation. Zeaiter et al. [2002] modeled the semibatch emulCerrillo and MacGregor [2002]. Crowely et al. [2000] calculated
sion polymerization reactor by using the zero-one model and thehe optimal input trajectory using sequential quadratic program-
coagulation reaction based on DLVO theory. Immanuel et al. [2002ming (SQP), while Immanuel and Doyle [2002] employed a genetic
developed a mechanistic model in which the average number digorithm for the open-loop control of particle size distribution. As
for feedback-based control, since a humerical solution technique
for the time evolution of emulsion polymerization system (or any
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high dimensional model, however, is not directly amenable to dy-on the left-hand side, the partial derivative with respect to r, is the
namic analysis and model-based controller design. For examplgrowth kernel, while R. and R,,, represent the nucleation and co-
high-order and ill-conditioning might render the corresponding lin- agulation reactions of particles with r size, respectively. Nucleation
ear control problems Riccatti unsolvable [Su and Craig, 1991], anaccurs by two methods: micellar nucleation and homogeneous nucle-
special numerical techniques may be needed to assess the basic praln. Micellar nucleation occurs when the concentration of free
erties of the models such as controllability and observability [Boley,surfactant (§ in the aqueous phase exceeds the critical micelle con-
1994]. Valappil and Georgakis [2002] used an approximated matheentration (cmc), whereas the oligomers in the aqueous phase with
ematical model for emulsion styrene polymerization reactor andheir length under the critical chain lengtl) §ggregate surfactant
then controlled the end-use properties such as tensile strength angblecules around them and bring about homogeneous nucleation.
melt index by applying a nonlinear model predictive control basedThus, total nucleation rate is given by the combination of these two
on the successive target region linearization method. Henson [2003hechanisms:

chose the finite elements as the outputs and controlled the cell dis-

tribution of yeast by using a linear time-varying model predictve R :JNZEe',m.ceuepw.[PW]'Cmme”eVaq @
control. Chiu and Christofides [1999] used the concept of inertial =R

manifolds to reduce the model order. They applied the method of Ruomogencoi=Kal PS TV, @)
moments to a continuous crystallizer model and applied a nonlin-

ear output feedback control algorithm. where &,.4. and \,, represent the entry rate constant for oligo-

An important principle that guides the present work is that themers of type i and the volume of the aqueous phase, respectively.
end-use properties are determined by the entire particle size disti,, [P.], and G, mean the probability of a radical of type i in
bution. Hence, the method of using lumped values, such as the mthe aqueous phase, the concentration of oligomer with chain length
ments, is not useful for the control of the entire size distribution.l in the aqueous phase, and the concentration of micelles, respec-
The system of our concern shows a bimodal distribution: one is thédively.
primary peak by the homogeneous nucleation and the other is the Coagulation is explained by the thermodynamic instability of col-
secondary peak by the micellar nucleation. Hence, the control ainidal particles. The coagulation rate is composed of two terms: the
in this paper is to regulate the entire particle size distribution. In ordeformation of a particle by coagulation of particles and the depletion
to reduce the order of the model, a principal component analysisf a particle by coagulation with other particles:

(PCA) based model order reduction method is applied. For this pur-

pose, the data set is generated by imposing a variety of input tra- Read Iy 9=H (Fuppe DRomasod T, 1~ H(Feuor~ N Reepieion @)
jectories into the mechanistic (or the first principles) model for sev-Here, H is the Heaviside function which is unity when the argu-
eral batches. On the basis of the data at every sample time, the prigrent is non-negative and zero otherwisg, and oper FEPrESEN

cipal components (latent variables) and loading matrices are calcihe cut-off size below which the particles are prone to coagulate
lated and then these transformation matrices are applied to a lineahd the maximum size of particles that could result by the coagula-
time varying model produced by linearizing the nonlinear modeltion of smaller particles, respectively. The rate of formation is given
along the nominal trajectory. The linear time varying model with by
reduced order is used in the application of a linear model predic-

2

tive control to produce the polymer products with desired particle R, ..(r,t) =1 (B, r)F(r OF(r, t)sr—mdr' ©)
size distribution. In section 2, the mechanistic model is summarized Vag (r=@ry)
and the model order reduction method is introduced in section 3 S )
. . . . and the rate of depletion is calculated as follows:
followed by section 4 in which the detailed procedure for the ap-
plication of model order reduction method and the results of par- I o
ticle size distribution control in a semibatch emulsion vinyl acetate Ruspienof 1) Vaq-rrnuc A, r)F(r OF(r hdr ©)

(VAc)/butyl acrylate (BuA) copolymerization reactor are discussed. o ) ) .
The intrinsic coagulation rate (coagulation kerflis calcu-

SEMIBATCH EMULSION COPOLYMERIZATION lated by considering the forces and potentials between the parti-
REACTOR MODEL cles:
N = A1 1) .
The mathematical model for the semibatch emulsion copolymer- Br.r)=c, W @

ization reactor is summarized in this section. For further details
about the model, the reader is referred to Inmmanuel et al. [2002¥here R is the diffusion coefficient and W denotes the Fuch's sta-
and Immanuel et al. [2003]. bility ratio.

The evolution of particle size distribution in an emulsion poly- ~ The expression for the growth rate is a function of the particle
merization is described by a population balance model of the folradius (r):

lowing form: ar_ 3

_dr_ 3 22 A
a a er_ Rgruwth(rit) dt 47Tpplzljzlkp”pl NA [MJ]PMWJ (8)
S+ () SR *Reaadr1) )

where k;, p, and M], denote the rate constant for propagation of

where F(r, t) denotes the particle density function. The second termpolymer of type i with monomer j, the probability that a radical is
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of type i in the particles, and the concentration of monomer j in theand Doyle [2003] is applied. The continuous PSD is divided into a
particles, respectivelyl (1, t) and M\afe average number of ac- finite number of sections within which an integral quantity of the
tive radicals in particle of size r at time t and the molecular weightdistribution is defined, in such a way that nucleation, growth and
of monomer j, respectively. coagulation processes that occur in each of the sectioins are con-
In addition to the balance equation for the particle size distribu-sidered individually to update the particle count. Since this method
tion, mass balance equations for initiator, initiator radical and monodetermines the nucleation, growth and coagulation processes by
mers are required. On the basis of the redox initiation system enthe underlying thermodynamic and kinetic events, governed by rela-
ployed in the VAC/BUA copolymer system, the following material tively simple equations with relaxed stiffness characteristics, the as-
balances for the oxidizer,J) the reducer (¥ and the initiator rad-  sociated stiffness in the full solution is removed. For details about

ical (R,) are calculated: the method, refer to Immanuel and Doyle [2003].
ALV To discretize the population balance equation for the particle den-
g . 20 ==k (LYY v, ©) sity function Ef. Eq. (1)], 250 elements (or grids) with a width of

2nm are used and mass balance equations for the two monomers,

d([Y2lVag) kLY v (10) aqueous phase volume, surfactant, oxidizer, reducer and initial radi-
dt et fwlt Tl T cals are calculated. Since the weight averaged particle size distribu-

dRIV.) , tion (the controlled output) is calculated by using the particle den-
S KalllYd] _Vaqlzlkn[Rw][Mllw sity function as wPSD(rt)=rF(r, t)/Y r’F(r,t), it also is com-

posed of 250 elements.

Fig. 1 shows the time evolution of particle density function every
12 min in a logarithmic scale. As depicted in the diagram, the dif-
Here, k,,  and ydenote the kinetic constants for the oxidation step, ferences of the magnitude of order between elements are so severe
the stoichiometric ratio between the oxidizer and the reducer, anghat the Jacobians become hypersensitive to slight changes in the
the molar feed rate of component i,T¥and [M], represent the  variables. As a result, optimization based on gradient method is not
concentration of the catalyst in the reduced form and the concergppiicable for the calculation of the optimal input values. Further-

ot 0
“VokalRJIOY [P]+[R,IO (1)
0% 0

tration of monomerin the aqueous phase. more, as the magnitude changes very rapidly, it is difficult to find
The mass balance for the monomers is given by: the bounds to normalize the variables.
dM 2 .
Tt Vw2, (6 Hki)pul Oligomed [M,V o NONLINEAR MODEL ORDER REDUCTION
2
2 (K k) PIML[% A(r HF(r Hdr 12) As stated in the previous section, the approach commonly used

in chemical engineering to address numerical solutions and control
where k;/Ky; and k;/Ky; are the rate constants in the particle/aque- problems for distributed parameter systems is based on the finite
ous phases, for propagation and chain transfer to monomer, respediscretization of the goveming partial differential equations (PDEs).
tively, for a polymer of type i with monomer j and [Oligomer]= The discretization of the underlying conservation laws gives rise to
Z’n“;;l[Pw]”. dynamical systems of a very high order, often leading to ill-condi-

A great deal of research work has focused on developing solutioned and uncontrollable systems.

tion techniques for distributed parameter systems [Ramkrishna, 1985
and the ability to accurately solve population balance models ha
motivated numerous research studies on the dynamics of partict
late processes. Among the variety of solution methods, discretizatiol 10| R
techniques are the most widely used. The finite difference methot
(FDM), one of the discretization methods, approximates the actua _ 1o}
system by using finite differences in the spatial coordinate. This
method, however, requires a great number of discrete points for a
accurate solution and may result in spurious oscillations and nume

l

1 min

icle density function (F)

-40| 13 min A
ical dispersion problems. Another method for the solution of the ° 2
PBE is the method of weighted residuals (MWR). In this method, & =L
the weighted sum of the residuals within sub-domains is driven tc €
o 60

zero. This method has a significant advantage over the FD methc ™ 10™r
in that the numerical dispersion problem is overcome. According
to the type of the basis function and weighting function used in the
solution, the MWR s classified into the collocation technique and a0
the Galerkin method. In the collocation method, an orthogonal poly-
nomial is employed as the basis function while the Galerkin meth:
od uses a weighting function identical to the basis function. Fig. 1. Time evolution of the particle density function (nominal
In this study, the solution technology developed by Immanuel case) in increments of 12 minutes.
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The main goal of a model order reduction (MOR) technique isponents would be equal to the number of modes of variations pres-
to generate a model of the system with a reduced number of statesit in the process. However, in practice, due to the inherent nonlin-
while preserving accurately the behavior of the original (full order) earity of the process and the measurement noise, more PCs may be
system. In general, most MOR methods are based on the idea ofeded to retain the relevant information present in the data matrix
projecting the full order states onto a state space with a suitable réKesavan et al., 2000].
duced order. For this purpose, the original states are changed to newFor nonlinear model order reduction, we consider the following

states through a linear transformation: nonlinear model:

x=Pz (13) x=f(x, u) (16)
where z is a g-th order projection of staféRX in the reduced order The issues in applying the transformation matrix to a nonlinear
state space arfélrepresents an orthonormal matrix for a transfor- system are associated with storage and evaluation. In order to trans-
mation from the reduced one to the original state space. form the original nonlinear system to the reduced order system, one

Among the methods for the determination of the transformationshould evaluate the transformation matrix at every numerical inte-
matrix P, the principal component analysis method (PCA) [Sharaf gration step, which is computationally expensive. To solve this prob-
et al., 1986] is applied in the current work. The PCA is one of sevdem, a nonlinear model is linearized at every sample time by using
eral multivariate statistical projection techniques in which the origi- a certain state (for example, a steady state in a continuous system,
nal number of (possibly) correlated variables is transformed into @& nominal or initial point in a batch system) and a zero-order hold
(smaller) number of uncorrelated variables cail&atipal compo- is used to calculate the discrete system matrices under the assump-
nents With this technique, limitations due to measurement noise,tion that the state between sample times is not changed significantly.
correlated variables and unknown variables, and data set dimer¥his is shown as follows:
sionality can be solved. In addition, the technique removes numeri-
cal ill-conditioning from the data in an effort to make the highly
sensitive system robust in the sense of resistance, that is, the ability ¥, =H,X, (18)

of a procedure to display |nsen5|t'|V|ty to either ;mall changes Muhere the overline denotes the deviation from the nominal state,
most of the data or large changes in a small fraction of the data.

Before the PCA is applied, it is convenient to tailor the data in and A and § are Jacobians of f with respect (o the state and input

the calibration set in order to make the calculations easier [Gelaqall t step k. Higher °‘.‘der terms are assumgd 0 b? negllglblg.
The transformation matriR in Eq. (13) is applied to the linear-

and Kowalski, 1986]. First, the values for each of the variables are .
. —_ized model, and consequently the following reduced order model
transformed to mean-centered form. In the second step, variance o
o . . in diS obtained:

scaling is used when the variables in a block are measured in dit-
ferent units: all the values for a certain variable are divided by the z,.,=A[Z, +B,Ty (19)
standard deviation for that variable in such a way that the variance _ —H'3 20)
for every variable is unity. In addition to these two scaling methods, Y Hi
one can give a smaller weight to certain variables of less importancavhere A=P'AP, B=P'B, and H=H,P, respectively.

Principal component analysis involves the expression of a matrix

X of rank r as a sum of r matrices of rank one: RESULTS AND DISCUSSION
X=M+M+---+M, (14)

Xk*l ='Akik +BkUk (17)

1. Database Generation and Linear Transformation Matrix
These rank one matrices can all be written as outer products of two In the basic steps of PCA, the generation of a database is the most
vectors; a scorg and a loading,p' crucial for the success of the procedure. However, there a@e no

X=tp gt (15) priori comprehensive rules for the generation of the ensemble from

i which the orthogonal principal axes will be extracted [Shvartsman
or equivalenthyX=TP" (P'is composed of the p' as rows andf and Kevrekidis, 1998]. The data should be as completely represen-
the t as columns). The elements of the principal component are thiative of the region of concern as possible. Methods of forming a
direction cosines or the projections of a unit vector along the prinfepresentative ensemble reported in the literature include the com-
cipal component on the axes of the plot. The scores veltierdt  bination of spatiotemporal motions at several values of operating
nx1 column vector (n: number of data). Its elements are the coorparameters [Bangia et al., 1997], mixing transients from initial con-
dinates of the respective points on the principal component lineditions distributed randomly around the relevant regions of phase
The scores and loadings can be calculated pair-by-pair by the nospace [Graham and Kevrekidis, 1996], and strong responses to the
inear iterative partial least squares (NIPALS) method [Sharaf efperturbation of actuators from their nominal settings [Loffler and
al., 1986]. Marquardt, 1992; Aling et al., 1996].

Among all the principal components calculated by the PCA, only  In order to generate the database for the calculation of linear trans-
the first few PCs are used as shown in Eq. (15) as the other PGsrmation matrices, pseudo random 4-level signals with switching
are related to the noise. Too many PCs may cause collinearity prolprobability of 7% are imposed on the plant (the first principles mod-
lems. The number of principal components, a design variable thagl) and the corresponding responses including state and output are
determines adequate description of the data, can be assessed byaared in the database at every sample time (1 min). One of the ma-
ing a cross validation method. Ideally, the number of principal com-nipulated variables is the flow rate of vinyl acetate feed with 0 and
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Fig. 2. Weight averaged particle size distributi_on at the final time Fig. 3. Loading for the first principal component of weight aver-
generated by pseudo random 4-level signals (60 batches). aged particle size distribution at final time.

10.5moal/s as low and high bounds, respectively, and the other isle primary peak region are attributed to the correlation of the mi-
the feed flow rate of surfactant solution between 0 and 4.97 mol/s.cellar nucleation and the growth rate. If the rate of the micellar nucle-

The reactor is initially charged with deionized water 1L, VAc ation is high, the number of micelle is increased and thus, the mono-
52 g, ferrous ammonium sulphate (FAS) 0.1g and sodium benmer concentration in the particle and the growth rate become low.
zoate 1.12 g. The reaction temperature is assumed to be maintain@tierefore, the distribution which produces a primary peak of low
at 60°C. During the first 105 min, oxidizer (t-butyl hydrogen per- amplitude in the large particle primary peak region has a second-
oxide) and reducer (sodium formaldehyde sulphoxylate) are fed atiry peak of high amplitude.
a fixed rate of 2.71x10and 1.86x10 mol/s, respectively and in- 2. Application to an Emulsion Copolymerization Process
creased to 4.02x10and 3.10x10 mol/s, respectively. The feed From the principal component analysis results in the previous
of BUA is injected at 2.81x10mol/s for the first 90 min and then  section, linear time varying transformation matrices are determined.
stopped until the end of the reaction. As discussed in the previous section, all the data are mean-cen-

Fig. 2 shows the results of weight averaged particle size distritered and scaled to have unit variance. For the principal component
bution (WPSD) at the final time for 60 batches. Since the inputs ar@analysis, the Statistics Toolbox for MATLAB is used. Among the
specified between the high and the low bounds, this figure accountstate variables, the particle density functions and the weight aver-
for the reachable region of the system under the current operatioaged particle size distributions at all grids for 60 batches are used
condition. During the early stage of the reaction, the amount of surto calculate the transformation matrices at every sample time.
factant in the reactor does not reach the critical micelle concentra- The results from the PCA reflect some of the characteristics of
tion (cmc), so homogeneous nucleation occurs and the particles forithis system. Fig. 3 shows the loading that corresponds to the first
the primary peak in the wPSD at final time. After the surfactant con-principal component for the wPSD at final time. As observed in
centration exceeds the cmc, only micellar nucleation takes place ifig. 3, the distribution in the small particle size has a different sign
the reactor. It is observed in Fig. 2 that the primary peak has a sefrom that for the distribution in the large patrticle size, which means
arated region. This feature is explained by the effect of timing andhat the particles at each region have different sources: one from
amount of the initial surfactant feed flow rate. The primary peaksthe homogeneous nucleation (large particle) and the other from the
in the right-hand side (large particle primary peak region) are genmicellar nucleation (small particle). Since the first PC covers about
erated when the surfactant feed flow rate in the early stage is zer60% of total variances, the boundary for the different region in the
while those in the middle are produced when the input for surfacloading does not match the real boundary in the observedttiata (
tant flow rate in the early stage has a value larger than zero. If thEig. 2).
surfactant is not fed in the early stage, the micellar nucleation is de- The input trajectories used in the generation of database are also
layed due to the lack of surfactant. Small numbers of micelles aranalyzed by using PCA. The input values at every 12 min are se-
responsible for the high monomer concentration in the particles antécted for 60 batches and the loadings corresponding to the first PC
the high growth rate during that period, and consequently large parfor each input are presented in Fig. 4. As observed in the diagram,
ticles are generated. Since the primary peak is highly sensitive tthe elements of loadings in the early state have the same sign for
the amount and timing of the surfactant feed flow rate in the earlyjthe distribution in the large particle size. As homogeneous nucle-
stage, the continuous region would be observed if the input is changeation takes place in the early stage, the inputs during the first few
more frequently (with high switching probability) and more input minutes play a key role in controlling the peak by the homogeneous
levels are used. nucleation.

The differences of amplitude among the peaks in the large parti- The upper diagram in Fig. 5 shows the number of principal com-
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Fig. 4. Loading for the first principal component of inputs.
Fig. 6. Comparison between the prediction of particle density func-

tion by principal components and the observed data.

20

15} 1 X X (21)

Xnormalized—

Xmax _Xmm
10 /\f 1
| In general, the PCs for 80 or 90% variance predict the behavior

of the original system in most of the results reported in the litera-

Number of PCs
(PDF)

o5 > v prs 0 00 20 ture, while the PCs for 99.9% variance are needed in this system.
This is because the measurement noise is not considered in the data
2 ' ' ' " ' set. If noise is present in the data set, a few dominant PCs will ex-

plain the behavior of the system and the others would be responsi-
ble for the measurement noise in such a way that fewer PCs will
be needed.

After the transformation matrices are obtained, the reduced order
model is used in the prediction equation of linear model predictive

Number of PCs
(wPSD)

0 0 a0 60 80 100 120 control (MPC) to build the prediction of future output behavior with-
Time [min] . ™ . .. . .
in a pre-specified horizon, called prediction horizon, in terms of
current and future input moves within the control horizon. The pre-

Fig. 5. Number of principal components covering 99.9% of total
variance at each sample time. diction equation is used to construct the performance index, which

is chosen to measure the output deviation from their respective ref-

erence values, and the optimization is performed to find a sequence
ponents for the particle density function (F) with 99.9% cumula- of input moves that minimizes the performance index while satis-
tive variances at each sample time, respectively, while the lowefying all the given constraints. The model predictive control algo-
diagram presents the number of PCs for the wPSD. Since the prethm implements only the first of the calculated input sequences
diction of F with 90.0% cumulative variances shows disagreementind the whole optimization is repeated at the next sampling time.
with the observed valuef( Fig. 6), the number of PCs is deter- A key feature contributing to the success of MPC is that various
mined so that the transformation matrix should constitute more thaprocess constraints can be incorporated directly into the on-line op-
99.9% of total variances. It is worth emphasizing that the PCA aptimization performed at each time step. Various versions of MPC
proach described in this paper employs the nonlinear fundamentddased on the aforementioned principles have demonstrated their
model directly, hence the unusually large variance is reasonable. Igffectiveness in application to complex processes [Garcia and Morari,
on the other hand, data were employed to generate the PCs, a lowk982; Lee and Ricker, 1994; Maner et al., 1996].
variance would be more practical to avoid capturing noise effects. In the present system, the controller is applied to track the time-
The number of PCs for F is chosen with the largest value (16) atarying wPSD reference trajectory under the assumption that the
every sample time for the purpose of simplicity in constructing pre-state is available by state feedback. The prediction (p) and control
diction equation. As for the wPSD, the number of PCs for 99.9%(m) horizons are 10 and 5, respectively, and the sample time is 1
cumulative variances is determined as 15. It is noted that the stat@in. The weighting matrices for control errdt')(and input A")
variables for mass balance equations, such as monomer concentere 10%,.,, and diag([0.1, 0.52]), respectively. The constraints on
tion in the reactor, are not projected to the latent variable space btie input magnitude and the rate of input change are considered as
only the normalization is carried out as follows: follows:
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Constraints on the input magnitude

0.0su,£1.0x10° [moal/s]
0.05u,£6.0x10° [moal/s]

Constraints on the rate of input change

-4.0x10°<Au,<4.0x10° [mol/s]
-2.0x10°<Au,<2.0x10° [mol/s]

Fig. 7 shows the wPSD at final time controlled by the linear MPC
under nominal condition, and Fig. 8 presents the input profile cal-
culated by the controller (solid line) and the nominal input profile
(dashed line) used in the calculation of the time-varying wPSD ref-
erence trajectory. When the controller based on the original full orde
model is used, the closed loop system is hypersensitive to the chan
of variable or a slight deviation from the setpoint; thus the perfor-
mance is not effective, even under the nominal case. As shown i
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Fig. 7. Weight averaged particle size distribution at the final time
controlled by the linear model predictive control on the basis
of the reduced order model under nominal condition (con-
trolled distribution and setpoint overlap each other).
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Fig. 8. Input profiles calculated by the controller under nominal
condition and the nominal trajectories.
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Fig. 9. Weight averaged particle size distribution at the final time
controlled by the linear model predictive control on the basis
of the reduced order model in the presence of disturbance
(surfactant concentration).
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Fig. 10. Input profiles calculated by the controller in the presence
of disturbance and the nominal input trajectories.

Figs. 7 and 8, the reduced order model yields a closed loop system
that is well-conditioned and the performance is seen to be satisfac-
tory.

To validate the performance of the controller for disturbance re-
jection, a disturbance is introduced to the surfactant concentration
in the feed. The concentration in the plant is less than that in the
model by 10% and the result is shown in Figs. 9 and 10. In this case,
the prediction and the control horizons are increased to 25 and 15,
respectively, to improve the performance of the controller and the
weighting matrices are changed\te8.1x10,,,.,, andA"=diag([0.1,

1.1]). Since the dynamic behavior of the system is determined in
the early stage because of the characteristics of the batch reactor,
the controller increases the feed flow rate of surfactant between 10
and 40 min to compensate for the error by the disturbance. Although
the inputs show aggressive responses between 70 and 100 min to
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eliminate the effect of the disturbance on the primary peak, the in- “Unsteady 2-D Flows in Complex Geometries: Comparative Bifur-
puts finally converge to the nominal profile because the effect of cation Studies with Global Eigenfunction Expansi®I&M J. Sci.

the disturbance in the later stage of the reaction is not strong. At Comput.18, 775 (1997).

the final time, the controlled output shows a slight deviation but theBoley, D. L., “Krylov Space Methods on State-Space Control Models;

error defined as Circ. Syst. Signal Procesk3, 733 (1994).
) Chiu, T. and Christofides, P. D., “Nonlinear Control of Particulate Pro-
WP SB(t) “WPSDesred 22) cessesAIChE J, 45, 1279 (1999).

IWPSD gesired Coen, E. M., Gilbert, R. G., Morrison, B. R., Leube, H. and Peach, S.,
where || - || denotes the Euclidean norm is 1.84%. In summary, the “Modeling Particle Size Distributions and Secondary Particle For-
disturbance rejection performance of the controller based on the mation in Emulsion Polymerizatior®olymer 39, 7099 (1998).
reduced order model is shown to be quite good. Crowley, T., Meadows, E., Kostoulas, E. and Doyle IlI, F. J., “Control

of Particle Size Distribution Described by a Population Balance Mod-
CONCLUSIONS el of Semibatch Emulsion Polymerizatiah}Proc. Contrgl10, 419
(2000).

This article addresses the application of a model order reductioilizalde, O., Vicente, M., Leiza, J. R. and Asua, J. M., “Control of the
using principal component analysis to project a first principles mod- Adhesive Properties of n-Butyl Acrylate/Styrene Latexsym.
el with high order onto the well conditioned latent variable space. Reac. Eng10, 265 (2002).
The numerical solution of the population balance equation involved=lores-Cerrillo, J. and MacGregor, J. F., “Control of Particle Size Distri-
the discretization of the spatial coordinate, and thus the order of the bution in Emulsion Semibatch Polymerization Using Mid-Course
system becomes high for the accurate prediction of the dynamic Correction Policiesind. Eng. Chem. Red.1, 1805 (2002).
behavior of the system. In order to reduce the order of the originatarcia, C. E. and Morari, M., “Internal Model Control: 1. A Unifying
model, transformation matrices are calculated by using principal Review and Some New Resulis{l. Eng. Chem. Process Des. Dev
component analysis at every sample time from the data set gener- 21, 308 (1982).
ated by the responses of pseudo random multi-level input signal&eladi, P. and Kowalski, B. R., “Partial Least-Squares Regression: A
Using these transformation matrices, the linear models obtained by Tutorial; Anal. Chim. Actal85 1 (1986).
the linearization of the original model along the nominal trajectory Gelbard, F., Tambour, Y. and Seinfeld, J. H., “Sectional Representation
are transformed to the reduced order linear time-varying model. of Simulating Aerosol Dynamicsl. Colloid Interface Sci68, 363
Since the number of the states and the outputs is reduced to less(1980).
than 10% of the original order, and the magnitudes of order of laGilbert, R. G., “Emulsion Polymerization: A Mechanistic Approach;
tent variables are reasonable, the closed loop system becomes well Academic Press (1995).
conditioned in such a way that the controller developed by the reGraham, M. and Kevrekidis, 1. G., “Alternative Approaches to Kar-
duced order model shows remarkable performance in controlling hunen-Loeve Decomposition for Model Reduction and Data Anal-
the entire particle size distribution both under the nominal case and ysis; Comp. Chem. Eng20, 495 (1996).
in the presence of disturbance. Henson, M. A., “Distribution Control of Particulate Systems Based on
In our future work, the use of additional outputs such as total num- Population Balance Equation Models; Proc. Am. Control Conf.,
ber of particles and solid content will be considered to improve the 3967 (2003).
performance of the controller. In addition, the effectiveness of theHounslow, M. J., “A Discretized Population Balance for Continuous
transformation matrices will be corroborated under various types Systems at Steady-Stat&lChE J, 36, 106 (1990).
of disturbances in experimental studies, and the validity of the strattmmanuel, C. D. and Doyle llI, F. J., “Open-loop Control of Particle
egy to produce polymer product with a desired entire particle size Size Distribution in Semi-batch Emulsion Copolymerization Using

distribution will be proven. a Genetic AlgorithmChem. Eng. S¢b7, 4415 (2002).
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